
JOURNAL OF COMPUTATIONAL PHYSICS 66, 1-20 (1986)

A Vectorized “Near Neighbors” Algorith,m of
Order N Using

a Monotonic Logical Grid

JAY BORIS

Laboratory for Computational Physics,
U.S. Naval Research Laboratory, Code 4040, Washington, D.C. 20375

Received January 29, 1985; revised July 1, 1985

When a large number of separate objects interact, N(N- 1)/2 interactions can occur.
However, a given object usually interacts strongly with only a few of the N - 1 others. Unfor-
tunately, keeping lists of the other objects with which it interacts or recomputing the near
neighbors each timestep is computationally expensive. This “near neighbors” problem has per-
sisted in computational physics and computational geometry for several decades. We need
efficient algorithms which select important near neighbor interactions without having to check
and analyze Nr possible interactions. To date the best algorithms which scale as N, rather
than N*, are scalar algorithms which address memory randomly.

This report introduces an efficient 3D near neighbors algorithm whose cost scales as N and
which vectorizes easily using data from contiguous memory locations. A Monotonic Logical
Grid (MLG) for storing the object data is defined dynamically so that objects which are
adjacent in real space automatically have close address indices in the compact MLG data
arrays. The data values for each object are stored at a location (i, j, k) in the MLG such that
the X positions of all the objects increase monotonically with index i, the Y positions increase
monotonically with index j, and the Z positions increase monotonically with index k. Such a
well-structured mapping from the real positions to regular, compact data arrays can always be
found. Further, when object motions result in a local violation of spatial monotonicity,
another MLG always can be found nearby. This means that local changes in the object
positions and hence spatial ordering do not trigger global changes in the Monotonic Logical
Grid.

The data relocations required to maintain the MLG as objects pass each other in space can
also be vector&d efficiently. The MLG algorithms will execute effectively in small array
processors and partition to take advantage of asynchronous parallel architectures in
VLSI/VHSIC-based supercomputer systems of the future. The technique seems well suited to
real time applications with massively parallel distributed processing architectures. 0 1986

Academic Press, Inc.

Contents. I. Introduction and background. II. The monotonic logical grid algorithm.
III. Additional aspects of monotonic logical grids. IV. Summary and Conclusions.

I. INTRODUCTION AND BACKGROUND

When N independent objects interact in space, N(N- 1)/2 interactions might be
important in determining how a given object reacts to the others at any instant.
Usually exact positions and velocities of the neighboring objects must be known.

1
0021-9991/86 $3.00

Copyright 0 1986 by Academic Press, Inc.
All rights of reproduction in any lorm reserved.

2 JAY BORIS

Knowing statistical averages and general properties of the distribution of objects
nearby does not provide enough data to compute local interactions accurately. At
any instant a given object usually interacts strongly with only a few of the N - 1
others. Unfortunately, keeping and updating lists of the neighbors or repeatedly
recomputing which ones are near neighbors is computationally expensive. The goal
is efficient, simple algorithms which select the near neighbors without a com-
putational cost scaling as N2. Effort on the near neighbors problem has persisted in
computational physics and computational geometry for several decades. This report
introduces an efficient 3D near neighbors algorithm whose practical cost scales as N
and which vectorizes easily using data from contiguous memory locations.

An efficient vector solution of the near neighbors problem would advance many
important applications. For an important class of molecular dynamics problems
involving interactions among many atoms and molecules, the near neighbors exert
the strongest forces and are the most likely candidates to enter into chemical reac-
tions. Many important physics problems in gases, liquids, solids, and transitions
among these phases require detailed many-body calculations where the close
encounters are most important.

For graphics based on vertex-edge representations of complex 3D shapes, local
relationships and orientations of nearby vertices determine which surfaces are
visible. It is clearly advantageous to be able to construct a 2D image of a complex
3D scene, for example, using the parallelism made possible by Very Large Scale
Integration (VLSI). Terrain management simulation models and multi-dimensional
radiation transport models are currently limited in their ability to compute
geometric obscuration. For controlling airline traffic over crowded airports,
collisions with nearby planes are the most immediate danger-and demand shorter
timescales for detection and corrective response. Consider the related scenario for
futuristic battle area management. A one-pass engagement against many thousands
of high-speed opponents requires fast redetermination of near neighbors to ensure
effective targeting in real time. These applications all require rapidly updating many
distinct local configurations as the objects move. Hereafter I will refer to these par-
ticles, objects, corners, etc., as nodes- concentrating on the geometric aspects of
the problem.

For complex manybody problems with N = 5000 independent nodes, more than
30,000 degrees of freedom are required, and 12.5 million interactions exist which
ideally ought to be considered. Current supercomputers deliver m 50 Megaflops
(million floating point operations per second) on optimized but realistic problems.
The straightforward recalculation of all interactions requires about 60 vectorizable
operations per interaction, or 10-15 seconds of dedicated supercomputer time. This
is not fast enough for applications where the data base should be updated and the
neighbors recalculated every second or two in real time.

The Monotonic Logical Grid technique introduced here scales as N, in practical
situations, and uses data from contiguous memory locations. A compact data struc-
ture to store the node data, called the Monotonic Logical Grid (MLG), is defined
dynamically so that nodes which are adjacent in real space automatically have close

A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 3

address indices in the MLG data arrays as well. As two nodes move past each other
in space, their data are exchanged or “swapped” in the MLG data arrays to keep a
strictly monotone mapping between the geometric locations and the corresponding
storage location indices.

To construct an MLG the data values for each node are stored at location
(i, j, k) in the MLG such that the X positions of all the nodes increase
monotonically with index i, the Y positions increase monotonically with index j,
and the 2 positions increase monotonically with index k. Section II describes the
algorithm in some detail.

It is not obvious but it is true that such an organized logical ordering of even
random locations can always be found. In Section II an order Nlog N constructive
algorithm for one such MLG is provided proving existence. Generally more than
one MLG meeting all the monotonicity conditions seems to be possible so the
technical problem of selecting the optimum MLG for a particular application has
to be addressed. In one case, minimizing average distances to neighbors in the
MLG may give the best grid. In other problems it may be best to maximize the
shortest distance to any node which is not a near neighbor in the logical grid.

Further, when node motions result in a local violation of the monotonicity con-
ditions on which the original MLG was based, another MLG can be found nearby.
This means that local changes in the node positions and hence spatial ordering do
not trigger global changes in where the node data have to be stored in the MLG.
The data relocations to maintain the MLG as nodes pass each other in space can
be vectorized without inefficient gather/scatter operations or variable-length
(scalar) linked lists. The MLG data structure and algorithms allow contiguous-data
vector operations which are long enough to be efficient for physical force sums, for
F= Mu orbit integrations, and for the node data “swapping” used to restructure the
MLG whenever the monotonicity conditions are violated.

The cost to execute a simple test version of the model is one hour on a DEC-
VAX 1 l/780 for 1000 particles for 1000 timesteps. We used a power series force law
for the 124 nearest neighbors, assuming that the average particle separation dis-
tance is smaller than the cutoff radius R, of the force law. Our Cray X-MP/12 treats
the same calculation over 100 times faster. A minicomputer host with modest array
processors would be fast enough using an MLG to integrate 5000 interacting nodes
and restructure the data base thousands of times in about 15 minutes, useful for
realtime applications where current supercomputers using other algorithms will be
inadequate. The MLG also permits partitioning to take advantage of asynchronous
multi-processor parallelism in VLSI/VHSIC-based distributed processing systems
(e.g. C3 I).

Brute force recalculation of all pair interactions can be vectorized but is of order
N2 and therefore costly. The best near neighbors algorithms published Cl] are of
order N with minimal operation counts. However, these O(N) algorithms are
intrinsically scalar and execute relatively poorly in parallel or pipeline-architectured
supercomputers. Further, memory is addressed essentially at random so data buf-
fering from disk or virtual memory for a large problem is time-consuming.

4 JAY BORIS

There are too many near neighbor algorithms and variations possible to compare
all of their operation counts. Further, optimal implementations are always machine
and problem dependent [2]. It is even harder to compare scalar and vector
algorithms, something we would like to do in theory here but which can really only
be done in practice. As a rule of thumb, efficient use of the vector hardware in
supercomputers, array processors, or the new generation of parallel processors
generally produces over an order of magnitude speedup over reasonable well com-
piled scalar code. In some cases the vector speedup factor will be much greater and
in others less.

For problems where the number of important near neighbors is large enough
that the computational cost is dominated by the physical interaction calculations
rather than computational bookkeeping to find the near neighbors, the algorithm
introduced here calculates two to three times as many interactions as minimally
necessary. This is accepted as the price for simple logic and vectorized computation
in contiguous memory. This means that a computer whose vector speed is only a
few times the scalar speed may see no improvement over the Hackney-Eastwood
PPPM techniques. In computers where the vector-scalar ratio is large, an order of
magnitude improvement with an MLG is at least conceivable. More substantial
gains are possible in highly parallel, multi-processor systems because the MLG
algorithms partition naturally.

Let N,, = -60 be the total number of floating point operations (flops) used to
evaluate each interaction between two of the N= 5000 nodes. The main component
of the cost for a timestep will be

Flops to compute all interactions = Fcai

= Nx (Nx NJ2 (1.1)

= 7.5 x lo8 flops + 15 set/step at 50 Megaflops.

Manybody calculations which compute all interactions become prohibitively
expensive with even a few hundred nodes because thousands of timesteps are
required for complex problems. The operation count per timestep goes up
quadratically with the number of nodes N but the effective resolution only increases
as the cube root of the number of nodes. This scaling of cost with at least the sixth
power of resolution is prohibitive. If the number of timesteps also has to be
increased when more nodes are simulated, the scaling can be even worse. This brute
force O(N*) algorithm is of interest because it vectorizes and partitions easily and is
exceedingly simple.

Reduction of this computational expense is obtained by computing the details of
the interactions only for pairs of nodes closer than a cutoff distance R,. This basic
nearest neighbors concept takes its most sophisticated form in the “Particle-Par-
ticle-Particle-Mesh” (PPPM) algorithms of Hackney and Eastwood [l]. Faster
algorithms and data structures for implementing this nearest neighbor
approximation have been the subject of much computational research in the last
few decades.

A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 5

Checking two locations to see if they are within a distance R, of each other
requires about N,, = - 10 floating point operations. Nine or ten flops are required
simply to calculate the square of the distance between the two nodes and then com-
pare it with the square of R,. If done for all pairs of nodes, this simple check costs
15-20% as much as the brute force calculation so relatively little is gained.

The only way to avoid the N* premium is to update the near neighbors list of
each node using nodes in a volume larger than would be required for an interaction
cutoff of R, but much smaller than the entire system. Hackney and Eastwood define
a PPPM “chaining mesh” where dX= dY = dZ = R, and check distances to objects
known to be in only the nearest 13 = (33 - 1)/2 cells. Only these particles might be
within R, of a particle in the chaining cell under consideration. On average only
about 40% of the nodes in these 13 cells are actually within R,. Taking L as a
typical system dimension, there are N,, = (R,/L)3 nodes in each of the PPPM cells
on average. The number of cutoff distance checks performed in a timestep is then

PPPMchecks=Nx 13xN,,. (1.2)

In the PPPM formulation, when R, is twice the average spacing, a typical node has
its distance to 104 other nearby nodes checked (13 cells x 8 nodes per cell). The
corresponding number in MLG would be 62 if all interactions within two grid dis-
placements in any direction are kept. This nominal factor of two gain in the MLG
approach is lost again because all the interactions would be calculated to maintain
vectorization rather than only 40% as possible with the scalar PPPM algorithm.
The real gain is the ability to use efficient, contiguous memory, vector operations
throughout the MLG algorithms and to cleanly partition the problem into com-
putational subtasks.

The operation count for the overall MLG algorithm developed next in Section II
is also problem dependent. Using typical simulation variables summarized in
Table I below, the cost of the MLG in vector floating point operations to execute a
timestep, exclusive of the relatively inexpensive orbit calculations, is

Flops for the Monotonic Logical Grid algorithm = Fmlg

= N x (N,, x N,, for neighboring node interactions

+ 3 x N,i x N,,) for swapping iterations in X, Y, 2

= 2.25 x 10’ flops -+ - 0.5 set/step at 50 megaflops.

(1.3)

Here Nsi = -4 is the number of iterations of vector swapping performed over the
entire grid to restructure the MLG after the node positions change each timestep.
N,, = -60 is the number of floating point operations to execute a single swap of
the data for two nodes in the MLG.

Typical values of manybody simulation variables are shown in Table I for a
5000~node 3D calculation where N, -N, -N, - 15-20. About 0.4 set/step are
required on our Cray X-MP/12, rated at about 100 Megaflops.

JAY BORIS

TABLE I

Typical Values of Manybody Simulation Variables for a
5OWNode 3D Calculation where N, -NY - N, - 15-20

N = 5000 = # of nodes interacting in space
N,, = -60 = # operations per vector swap in MLG algorithms
N,, = Q 4 = average # of vectorized swapping iterations to

relocate object data in the MLG
N,. = -60 = # of near neighbors usually included in the

interaction calculations
N,, = -60 = # of flops total compute an interaction
N,, = - 2.5 = # of steps between recomputation of the

nearest neighbors lists in scalar algorithms
Nm = # of objects in the average cell of PPPM

chaining mesh

Section II contains a description of the MLG itself, an O(N log N) sort algorithm
to find a starting MLG from arbitrary initial data, and simple algorithms which
restructure the grid dynamically as the nodes move. Section II also presents a few
simple tests of the method. Section III considers several extensions. Section IV con-
tains a summary and conclusions.

II. THE MONOTONIC LOGICAL GRID ALGORITHM

A Monotonic Logical Grid is a simple, compact way of indexing and storing the
data describing a number of nodes moving in space. For N particles in three dimen-
sions, the three arrays of locations, X(i, j, k), Y(i, j, k), and Z(i, j, k), constitute an
MLG if and only if

X(i, j, k)<X(i+ 1, j, k) for 1 <i <NX- 1,

Y(i, j, k) < Y(i, j+ 1, k) for l<j<NY-1, (2.1)

Z(i,j,k)<Z(i,j,k+l) for 1 <k<NZ- 1.

Given N = NX x NY x NZ random locations, the spatial lattice defined by an MLG
is irregular. However, the cells defined by logically neighboring locations are distor-
ted cubes and thus form a useful consistent partitioning of the spatial volume.
When the N node locations satisfy Eqs. (2.1) and any additional constraints or
relations specifying other than infinite-space boundary conditions, they are in
“MLG order.” This ordering is useful because the direction for going from one node
to another in space and in the MLG is the same. Further, nodes which lie between
two nodes in space will also be between them in the MLG. Thus neighbors in real
space have neighboring address indices in the MLG as well.

A VECTORIZED “NEAR NEIGHRORS” ALGORITHM 7

FIG. 2.1. Three 4 x 4 Monotonic Logical Grids are shown. Four rows of four nodes each represent
near neighbors rather well for many spatial configurations. The cells in the MLG cluster automatically
where the nodes are.

Figure 2.1 shows three different spatial configurations of 16 nodes. The nodes are
ordered into four rows and four columns in each of these configurations
corresponding to regular storage of the data in the two-dimensional 4 x 4 MLG.
The cells of the MLG move with the nodes and thus always have exactly one node
in them at any time. When all the nodes move to the upper left of the region, as in
the panel on the right, the MLG is just as regular as when the nodes are uniformly
spaced. This mapping of irregular locations onto a very regular data structure is
what permits optimal use of vector and multiprocessor hardware.

Figure 2.2 illustrates several different MLG mappings of the same 16 node
locations. The upper panel shows the 16 locations in a regular spatial lattice. The
obvious numbering of the locations into four rows of four nodes each is an MLG

FIG. 2.2. Three Monotonic Logical Grids from identical data. The regular, doubly periodic 4 x 4 grid
in the upper panel is a trivial MLG. The MLG in the lower left is a moderate distortion of the regular
lattice above. The center and right-hand panels are other, somewhat more distorted MLGs indexing the
same node locations as the optimal MLG on the lower left.

8 JAY BORIS

because the X and Y components of all the node locations (dots) increase
monotonically with the X and Y indices, i and j. In the three lower panels the
locations have been displaced from the regular spacing. Each of these panels con-
tains the same data, but the MLGs for storing these data, as indicated by the
logical mesh lines, all differ.

The lower left panel is a recognizable distortion of the regular grid above. The
indexing of the nodes would be identical in both cases although the actual data
stored would differ somewhat since the nodes have moved away from their regular
locations. The lower center and lower right panels show different logical indexing
for the same physical data giving two other acceptable Monotonic Logical Grids.
In the center the connections to points in the second row from above and from
below have all been displaced to the left. On the right, the connections to the
second column from nodes located logically in columns one and three have been
displaced downward.

These figures show that there can be a number of MLGs with the same
Lagrangian data, all satisfying the required monotonicity conditions from
Eqs. (2.1). These spatial monotonicity conditions constitute 3N - NX x NY -
NY x NZ - NZ x NX numerical comparisons which can be performed to determine
if a particular organization of the node locations is in MLG order. For each dimen-
sion of the desired data structure such a monotonicity condition can be defined.

In space the coordinates can be rotated or redefined and this corresponds to a
different family of MLGs for the same node positions. The monotonicity conditions
may not change in the new coordinate system but the node location coordinates
will. Even if the coordinate system is held fixed, node motion will quickly invalidate
at least some of the relations (2.1) requiring a reorganization of the node data in
the arrays to restore a completely monotone mapping. Using the monotonicity con-
ditions, a given data structure can be checked to see if the locations are in MLG
order more efficiently than distances can be compared in space. However,
additional algorithms are needed when MLG order is violated.

If the nodes are not in MLG order, the following algorithm using a vector sort
routine O(Nlog N) can be used to rearrange them. First sort all N locations into
the order of increasing Z. The first NX x NY of them should be indexed k = 1, and
sorted into the order of increasing Y. The first NX of these should be indexed j== 1
and then sorted into the order of increasing X. These nodes are indexed from i= 1
to i = NX. The next NX locations, indexed j = 2 but still k = 1, are again ordered
and indexed from i = 1 to i= NX. This procedure is continued until the first
NXx NY plane of locations has been arranged. Since the node locations were
initially ordered in Z, the subsequent reorderings within the k = 1 plane cannot dis-
turb the monotonicity conditions relating the first plane to any subsequent reorder-
ing of the second and subsequent planes. Similarly, all the locations will satisfy the
monotonicity conditions in Y and X as well.

Once the first plane is ordered, the next NX x NY locations are indexed k = 2,
and the MLG ordering within this plane is constructed just as for the first plane. All
NZ planes are organized this way. The process requires of order

A VECTORIZED “NEAR NJ3GHBORS” ALGORITHM 9

NZ x NY x NXX (log NZ + log NY + log NX)

+ NZ x (NY x NXx (log NY + log NJ-) + NY x NXx log NX) (2.2)

=NZxNYxNXx(logNZ+2logNY+3logNX)

operations to construct the MLG. This sort algorithm could be repeated every
timestep as necessary to restructure the MLG when node motions in one of the
three coordinate directions cause some of the conditions (2.1) to be violated.

The existence of this constructive algorithm proves that at least one MLG for
even random locations always exists and that it is not hard to find. As a con-
sequence, data manipulation and summation algorithms in the MLG can always
assume the rigorous spatial monotonicity of the MLG. When several node locations
are identical, any ordering the sort procedure comes up with is correct as the con-
ditions (2.1) are satisfied. Locally degenerate grids are possible when several
locations overlap.

Although this algorithm is fast, it is of order N log N, all data must be
manipulated whether it is in MLG order or not, and the algorithm may move data
a long distance in index space to correct even small changes in position. To counter
these objections, an order N log N algorithm is described which executes local but
vectorizable exchange or “swapping” operations on the MLG data to restore
monotonicity everywhere. The extra factor log N now has a very small coefficient
because small monotonicity upsets from the previous set of locations generally do
not require information from the other side of the grid for their correction.

If two nodes move less than a typical separation distance per timestep, a con-
dition generally required for accurate integration of the equations of motion, a few
iterations are usually enough to restore MLG order. A “swap” is executed by
testing the conditions in Eqs. (2.1), and then, when the corresponding monotonicity
condition is violated, exchanging the locations in the logical grid of all data pertain-
ing to the two nodes involved. Each direction is checked separately. A red-black
algorithm [4] would allow at least half the tests in a given direction to be perfor-
med simultaneously and thus vectorized while converging as fast as a scalar
iteration.

Five fully parallel arithmetic operations are sufficient to test for monotonicity
and prepare to swap any amount of data by the usual data-splitting technique of
multiplying by a one or a zero. Appropriately chosen ones and zeros can be used to
exchange the different data at the node locations in six additional parallel
operations per data item. When the locations are in MLG order, the swapping for-
mulae change nothing. When two locations are out of order, these formulae
interchange the node data in the MLG so they will be in order for the next
iteration. The algorithm vectorizes easily and all node data at every MLG point can
be treated identically.

These six operations must be repeated to swap each data variable stored in the
MLG. As a minimum these variables include the three components of the node
locations and an identification number, ID #(i, i, k), to mark which of the N par-

10 JAY BORIS

titles currently is at i, j, k in the MLG. To vectorize the complete algorithm, the
velocity components VX(I’, j, k), VY(1’, j, k), VZ(i, j, k), the mass M(i, j, k), and
another force law constant FC(i, j, k) must also be moved about dynamically.
These nine variables require 54 operations to be moved between adjacent cells for
each swapping iteration. Thus N,, = -60 operations are required for each iteration
in each direction for each node. This is about as much work as calculating three
components of the force acting between two nodes which are near neighbors in the
MLG. With N,i = -4 swapping iterations being performed in each direction, the
total cost of restoring the MLG every timestep is about the same as calculating for-
ces from 12 neighbors. When timesteps are short, this cost reduces further.

When the MLG algorithm is used, the cost in vector floating point operations to
execute the geometric and force summing in a timestep is given by Eq. (1.3). The

FIG. 2.3 One plane of the MLG for the 512-particle test problem is shown at four successive times as
random motions distort the initially regular skew-periodic lattice. The panel in the lower right is plotted
after several transits of the system by the fast particles. The average grid line length does not increase
above about fi times the initial, regular, and nearly minimal spacing.

A VFXTORIZED “NEAR NEIGHFJORS” ALGORITHM 11

speedup expected using this algorithm is large, a factor greater than thirty for 5000
nodes. Not only is the N* dependence removed but the actual near neighbor
interactions can be computed with very high efftciency, comparable to the best
order-N scalar algorithms. At most a fifth of the computation is expended on main-
taining the MLG data structure. The rest is used in computing pairs of interactions
at full vector efficiency.

The random motion of points in a cubical domain is taken as a test problem to
illustrate the concepts. A topologically regular 8 x 8 x 8 3D grid is defined for stor-
ing the position and velocity components of 512 randomly located nodes. The
domain is doubly periodic in X and Y and is bounded in Z by two reflecting end
walls at Z = 0 cm and Z = Z,,, = 8 dZ. A number of short calculations have been
performed using this system to test and develop various aspects of the model.
Figure 2.3 shows the first of eight planes of this 3D MLG, plotting the X and Y
locations of the 64 nodes currently on that plane. The initial conditions for the
calculation are shown in the upper left, regularly spaced locations with random
velocities uniformly distributed in each coordinate from -lo7 to +107 cm/set. The
three remaining panels show plots of the 64 locations in the same MLG data plane
at three subsequent times. As the nodes move in the plane and between planes, a
complicated but clearly structured MLG is always maintained.

Under a number of different physical circumstances and numerous different
initial conditions the model has been able to find an MLG after only a few swap-
ping iterations. The average near neighbor separations increase somewhat at first
over their almost minimal initial values. Rather quickly, however, random swap-
ping halts the increase of this average distance to the nearest neighbors. The
average length of lines connecting the Lagrangian nodes is only about fi larger
than the minimal lengths of the initial regular lattice.

FIG. 2.4. Frequency of requiring N swapping iterations to construct a monotonic logical Grid. dl,,
is the maximum fraction of the average spacing A traversed by any particle per timestep. The velocity
distribution was square in the tests. As the timestep increases by a factor of 16 the number of iterations
of swapping needed to restore the MLG increases only by a factor of 2, from about 2.5 iterations to
about 5.

12 JAY BORIS

Figure 2.4 displays the frequency distribution for the number of swapping
iterations required to restore the MLG after relative motion of the nodes has dis-
rupted it. Three cases were run for the same initial distribution of zero-sized non-
colliding particles, with timesteps iit = 2.5 x 10 ~ l6 set, 1.0 x 10 - l5 set, and
4.0 x 10 ~ l5 sec. The clear, outlined bars in the middle of each bin in Fig. 2.4 corres-
pond to the intermediate case with lo-l5 set as the timestep. For this case dl,,, =
0.1 A meaning that the fastest particles traverse l/10 of the regular initial spacing of
A = 10e7 cm per timestep. The data with lightly shaded bars (on the left of each
bin 1, dl max = 0.025 A, show the results when lit is smaller by a factor of four. The
data depicted with dark bars on the right show results when tit is a factor of four
larger, i.e., dl max = 0.4 A.

To interpret the figure consider dl,,, = 0.1 A. About 40% of the timesteps
required four iterations of swapping to restore the MLG. Less than 10% of the
timesteps required six or more iterations. The average number of iterations required
is 4.0 for dl,,, = 0.1 A. When dl max = 0.025 A, the average number of swapping
iterations is 2.85, about 2fi. When dl,,, = 0.4 A, the average is 5.0 swapping
iterations per timestep. Thus the actual computational work decreases per unit
integration time with longer timesteps because the number of swapping iterations
increases much more slowly than the timestep increases.

A great deal of swapping goes on in the first few iterations out to the average
number for the particular timestep chosen. For timesteps with relatively large num-
bers of iterations, the likelihood of this extra work being required decreases by a
factor of two or three for each extra iteration. These timesteps requiring a relatively
large amount of work contribute very little to the average computation load needed
to restore the MLG because they occur so infrequently.

T 8

5 10 15 20
log2 N w

FIG. 2.5. The N log N cost of the swapping algorithm is illustrated. The average number of swapping
iterations required to restore MLG order in each of three different system and timestep sixes is shown.
The scaling with N log N is clearly established by the straight lines through the data points for different
system size and timestep. In timings on the NRL Cray, swapping requires only about 5% of the total
run time-allowing systems in excess of 1000 x 1000 x 1000 before swapping becomes a significant frac-
tion of the overall execution time.

A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 13

Figure 2.5 shows the average number of swapping iterations required as a
function of the base two logarithm of the system size N for the three timesteps con-
sidered above. The N log N dependence is clearly evident. For the 32 x 32 x 32 node
system running a molecular dynamics problem on the Cray X - MP/12 at NRL,
the swapping constitutes only about 5% of the cost of the entire calculation so
additional optimization is not required.

In test molecular dynamics calculations, with non-zero particle size, forces were
considered between a given particle and each of the 5 x 5 x 5 = 125 neighboring par-
ticles centered on it in the MLG. Since the interaction has to be computed only
once for each pair of nodes in the Near Neighbors Template and can be ignored for
self-interactions, these tests had

N,,=(5x5x5-1)/2=62= -60 (2.3)

near neighbors. When many nodes are within the cutoff distance R,, the Near
Neighbors Template should be extended to three planes in each direction, i.e., to
7 x 7 x 7. An appreciable fraction of the forces calculated will be beyond the cutoff
distance but this extra work can be performed by vector operations working from
contiguous locations in the computer storage. This gain in speed is typically several
orders of magnitude on highly parallel systems and is still worthwhile even if a fac-
tor of two or three is wasted calculating unnecessary interactions.

When nodes are far apart compared to the cutoff radius R,, only the 13 neighbor
interactions from the 3 x 3 x 3 interaction template need be considered. This num-
ber 13 is the same as the number of chaining cells which have to be considered in
Hackney’s PPPM data structure to find all nodes within the cutoff radius R,.
Figure 2.6 shows a schematic rendition of three nested Near Neighbors Templates.
Only the half of the template with index offset larger than zero has to be considered

l 16 pts
* 30 pts
l 16 pts

FIG. 2.6. Near Neighbors Templates for 5 x 5 x 5 neighborhood. Three shells of neighbors, each on
average farther from the target cell, are shown as the square, triangle, and circle points, respectively.

14 JAY BORIS

since all pair interactions with nodes having a lower storage address index will have
been calculated previously. As shown, shells of interaction can be defined which
correspond approximately to neighbors at different physical distances. The 16
neighboring nodes indicated with squares form the closest shell. The 30 triangle
nodes are a bit further away, on average, and the 16 circle nodes form the furthest
shell of the NNT.

III. ADDITIONAL ASPECTS OF MONOTONIC LQCICAL GRIDS

The MLG replaces a regular grid in space having a variable number of nodes in
each cell for an irregular spatial grid which has exactly one node per cell by con-
struction. This logical and computational simplification brought about by the MLG
mapping permits extensive optimization under current and planned supercomputer
architectures (e.g., [3, 5-J) without sacrificing the generality needed to make it
useful. Thus the MLG algorithms can be applied to gas, solid, and liquid systems
using the same logical structure for problems of interesting size, i.e.,
100&10,000 particles.

Optimization of nearest neighbor algorithms for particle dynamics is both
machine and problem dependent. Vectorization techniques to achieve very high
rates of computation require that all logical and arithmetic operations be performed
on organized arrays of independent data. Distributed processing approaches to
massive parallelism rely on a number of self-controlled processing centers operating
asynchronously, but according to fixed rules of cooperation, on an evolving data
base. To take advantage of both approaches simultaneously requires being able to
define a number of vectorizable segments of the problem which can be calculated
independently. Furthermore, the vectors must be long enough to be com-
putationally efficient but short enough that the memory needed in each
asynchronous processing center is not prohibitively expensive. The MLG
algorithms can be partitioned for multi-tasking across a number of independent
vector processors.

To maximize the length of vectors within each partition when the typical MLG
dimension, NX~NYYNZ~N’~~, is only about 20 (8000 objects) requires treating
a substantial fraction of a plane as a single vector. In the 8 x 8 x 8 test problem, vec-
tors of length 64 can be used throughout except for the X-direction monotonicity
tests where vectors half as long would result. This is accomplished by collapsing
several indices into one index and by paying careful attention to the boundary con-
ditions.

Several different boundary conditions have been tested and used with Monotonic
Logical Grids; reflecting conditions, 3D free space conditions, doubly periodic con-
ditions, and doubly skew-periodic boundary conditions. The boundary conditions
determine the configuration of created data placed in “guard” or “ghost” cells
around the MLG data arrays. There are as many planes of guard cells beyond the
core MLG as are necessary to allow the pair-interaction calculations to proceed for

A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 15

nodes on the edge of the MLG without reaching for unavailable information. This
common technique to simplify the program leaves hiccups in the memory storage to
skip over the ghost cells.

These hiccups in usual implementations of doubly periodic boundary conditions
can be avoided by connecting the end of one row (I- KY, J) with the beginning of
the next row (I = 1, J+ 1) logically as neighbors. They are physically close, only
displaced vertically by dY in a regular lattice. This “skew-periodic” MLG structure
is shown in the upper right panel of Fig. 2.3. There the ninth row and column of
image points are depicted above and to the right respectively of the fiducial space
outlined in fine lines. This indexing scheme allows NXx NY nodes to be treated as
interior points without indexing hiccups. In this effectively one-dimensional index-
ing scheme, guard cells are only used at the ends of the 2D planes in memory. The
dY of skewing is distributed over the whole grid and hence becomes negligible once
NXx NY reaches 64 or so.

Each of these different conditions requires different, straightforward treatments
for the image nodes when swapping occurs. The only slightly tricky part is optimiz-
ing the swapping in the skew-periodic grid. [Note that one has to subtract (or add)
one system length in the X-direction (i.e., iVXx d) for each row down (or up) in the
MLG the node data are swapped.] The overall skew-periodic MLG algorithm is as
simple as the regular periodic boundary condition and replicates hypercube
addressing in a regular linear memory.

Further gains are possible in principle. Optimum computational efficiency results
when the last few swapping operations are performed only for the few grid points
which might have become non-monotone due to adjacent swaps taking place dur-
ing the previous iteration. The scalar program to perform the few remaining swaps
and keep track of which few nodes might have had their monotonicity conditions
affected by the previous swaps is complicated. To date, convergence relative to the
force calculations has been so fast that this extra work has not been indicated. In
the future it may be worth the effort for production calculations.

The same kind of gain can be obtained by trimming the Near Neighbors Tem-
plate defining which logical neighbors are likely enough to be close spatial
neighbors that they should be included in the vector interaction calculations
automatically. When a scalar “cleanup” portion is added to the vector force sum-
ming algorithm, the number of logically neighboring nodes which are always con-
sidered can be reduced significantly below that required to ensure no near misses.
Figure 2.6 shows three shells of logical interactions in the Nearest Neighbors Tem-
plate (NNT), each succeeding shell taking neighbors which are logically, and
usually physically, farther away.

For the few nodes which may have spatially close neighbors which are removed
more than two or three locations logically, a scalar calculation can be performed.
Once a node requires extra work, the scalar search can be extended to whatever
logical distance is necessary to ensure that physically nearby nodes do not go
uncounted.

A 5 x 5 x 5 cubical NNT has 62 interactions which will be considered for each

581/66/l-2

16 JAY BORIS

TABLE II

The Percentage of MLG Near Misses“

0 In each cell the percentage probability of a node in that MLG cell being within 4, 5, and 6 A is
given by the first, second, and third numbers, respectively. For example, the nodes that are displaced by
one in both i andj from the target cell (i.e., i + 1, j+ 1 or up one and one to the right) come within 5 A
of the target cell (0.5 times the average separation) only 1.3080% of the time.

node. From empirical evidence to date this is adequate provided the critical radius
of consideration is somewhat less that the average separation, here taken to be the
original node spacing. Relatively few near misses (1 in 104) can occur because
neglected nodes are logically at least 3 and generally 4, 5, or 6 nodes away. When
the shell is extended by about 20% (see Table II) to include nodes three steps away,
fewer than 1 in lo6 or 10’ near misses occur.

Holes can be added to the MLG, locations which move or stay fixed in space but
which don’t contain a node. Any node neighboring a hole has one fewer real node
in its interaction NNT. This obvious disadvantage is balanced by the fact that hole
locations can be updated any way necessary to improve the locality and structure of
the MLG. By adding or shifting holes about judiciously it may be possible to avoid
highly distorted MLGs. The holes would be subject to swapping with nodes just as
if they were nodes but their equations of motion can be different and their interac-
tions with real nodes are zero.

Table II was computed using the 512-particle model with point non-interacting
particles and the complete 7 x 7 x 7 NNT. The volume around each particle was
divided into shells of thickness 1 A and the number of particles in each radial shell
was counted for particles logically outside the 5 x 5 x 5 template to determine how
often “near misses” occur. A near miss occurs when a node gets close physically to
another node without coming within the MLG Near Neighbors Template which
ensures that the interaction is automatically counted in the vector sum. Concen-
trating first on the common features of the two physically identical calculations
shown in the figure, we see that the probability of an uncounted particle
penetrating the interaction volume drops off very rapidly as the distance becomes
small and hence the physical interaction would be important. It is 100 times less

A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 17

likely to find an undetected particle coming within 10 8, than to find one coming
within 20 A. It is another 100 times less likey to find one coming within 5 A. No
near misses were ever found less than about 3 A. The table also shows quite clearly
that nodes three locations away can be important.

A few words about the application of the MLG to Lagrangian fluid dynamics are
appropriate here. Each node of the grid can be identified with a fluid or vortex
element. The advantage is having a regular grid available to solve the physical
evolution equations. Elliptic equations, for example, become amenable to highly
efficient, vectorized multigrid methods on regular NX x NY x NZ grids even though
the fluid elements themselves move randomly. Two-dimensional and four-dimen-
sional problems can be handled as easily by the same methods.

Work is needed, however, on telling how to evaluate spatial derivatives
accurately on the distorted MLG. When nodes are far apart, the fluid cannot be as
accurately represented in between as when they are close. To keep the resolution
more uniform than the specific fluid flow may be capable of, it can become
necessary to remove nodes where they are crowded and to inject them elsewhere to
better resolve some regions. To do this in the MLG involves finding a fluid element
which can be merged with a larger one nearby in a manner which conserves mass,
momentum, and energy. This frees up an MLG node which can be “shifted” to the
correct row, column, and plane to improve a deteriorating local resolution.

For comparison consider another free Lagrangian approach, the Lagrangian
Triangular (Tetrahedronal) Grid [6-71. In this approach the logical grid structure
varies in time as the nodes move. The number of nearest neighbors can vary from
node to node and the number and identity of these neighbors can vary at a given
node as the Lagrangian configurations change. This extra freedom, not allowed in
the MLG, is used to maintain a local grid structure optimized to guarantee
diagonal dominance of the simplest conservative finite-difference elliptic operator.
Scalar-linked lists become necessary to keep track of near neighbors though the
resulting algorithms are still of order N. The price is the loss of local order in the
grid and hence vectorization. Generalizing this Lagrangian Triangular Grid (LTG)
to 3D is straightforward but practically very complicated. The grid must be com-
posed of adaptively restructuring arrangements of tetrahedra.

Clearly the local spatial structure of the MLG is not as “good” as in the generally
structured LTG but the global structure compensates for this. The monotonicity
conditions specify a meaningful and useful relationship between spatial derivatives
and grid differences. As a result, fluid flows with long-range correlations, unlike the
random particle motions used in earlier tests, may lead to an additional com-
putational expense at specific times. In the smooth flow of large rotating and trans-
lating vortices, an initially rectilinear grid might survive many timesteps before any
of the local monotonicity constraints are violated. Nearby points would move in
almost the same way. Once the fluid rotates far enough, however, monotonicity
violations would have to occur. Because of the long-range correlation of the
motions, a number of swapping iterations may be necessary to reset the MLG.

The MLG also suggests itself for use in multi-phase fluid problems. Each MLG

18 JAY BORIS

node could be used to represent a droplet in a spray or a grain of sand in a
sandstorm. Droplets could have varying sizes which increase or decrease in time
due to local surface effects like condensation, evaporation, or abrasion and all the
droplets would not have to be simulated. The accumulation of temporal averages
over times and distances short compared to changes in the background flow means
that only a small fraction of all the droplets or particles would have to be followed
in the MLG to get a good estimate of the interactions of the whole distribution of
particles with the background gas.

The gaseous background could be represented on a Eulerian mesh to facilitate
swapping of mass, momentum, and energy back and forth between particles and
gas. The volume overlap of MLG cells with cells of the Eulerian grid can be used to
circumvent a major complication of Monte Carlo methods, choosing the values of
continuum functions at places where there are no particles or Lagrangian nodes.
The MLG cells provide a natural way to interpolate back and forth between the
two representations.

When insolation of dust or droplet clouds is important, the MLG provides a sim-
ple way to assess the radiation opacity along any particular direction. The grid axes
can be rotated in a given direction and the swapping algorithm used to resort the
nodes along that direction. There are a number of line-of-sight obscuration
problems where this flexibility will be useful.

The Monotonic Logical Grid has been given only a geometric context so far. In
the applications and examples above, the moving objects are being arranged
relative to each other in 3D Cartesian space. Other more abstract applications
suggest themselves. The MLG can just as easily represent multi-dimensional phase
spaces for Boltzmann and Vlasov equations. The grid may also be useful for some
classes of problems involving more abstract data organization.

IV. SUMMARY AND CONCLUSIONS

This report introduces a vector algorithm to determine near neighbors whose
cost scales essentially as the number N of independent nodes. This is accomplished
by defining a Monotonic Logical Grid for storing the node data dynamically so
that nodes which are adjacent in real space are automatically close neighbors in the
logical grid as well. As a simple geometric test problem, a regular 8 x 8 x 8 3D grid
was used to store the position and velocity components of 512 randomly located
particles in a cubical domain. For this idealized system the nodes were given ran-
dom velocities and the MLG was evolved for many transits of the system by the
faster particles. Statistics on near misses by logically far away nodes and on the
number of swapping iterations required to restore the MLG were presented.

It was found that the restructuring of the dynamically changing MLG can
generally be computed locally in a very few vectorized iterations without using
inefficient scalar memory references or discontiguous memory operations. Almost
all of the grid restructuring occasioned by nodes passing each other occurs in the

A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 19

first two or three vectorized iterations. Further optimization is possible but the
N log N scaling of MLG restoration has such a small coefficient that it is not
necessary. It is also found that the spatially close nodes are nearby in the MLG as
well. Two or three MLG index displacements effectively define the spatial near
neighborhood except for a vanishing small number of cases which can be detected
and corrected inexpensively.

The MLG differs from previous near neighbor algorithms. It effectively removes
the constraint of having to associate a cell of the logical grid with a fixed region of
real space. It introduces the simplifying “constraint” of only one node per com-
putational cell. When many of the nodes cluster somewhere, a corresponding frac-
tion of the storage locations in the MLG is automatically associated with that
region. This means that substantial variations in node density are adaptively grid-
ded by the MLG and large regions of space, as well as computer memory, are not
occupied by empty cells.

This algorithm gives regular global orderings of the node data and so allows
efficient, contiguous, concurrent vector operations which are longer than the
relatively small number of neighbors considered for each node but which can be
much shorter than the total number N. The algorithm will execute efficiently in vec-
tors of small array processors and permits direct partitioning to take advantage of
massive asynchronous parallelism in VLSI/VHSIC-based distributed processing
systems. The cost to execute the current version of the model is one hour on a
DEC VAX 1 l/780 for 1000 particles for 1000 timesteps when a simple force law for
the 124 nearest neighbors is used. With commercially available highly parallel
systems, tens of thousands of interacting objects could be monitored and the data
base restructured thousands of times in about 15 minutes, fast enough for impor-
tant realtime applications.

A number of potential applications were discussed briefly. Other uses will suggest
themselves as the good properties and restrictions of the MLG mapping between
real space and relative (logical or computer storage) space become better
understood. Practical experience with the MLG is still limited so major surprises
may yet be uncovered in some applications.

Many MLG conligurations may be possible for the same physical node
arrangements and simple examples suggest that the best configurations are much
better than the worst. Thus efficient methods of optimizing local and global struc-
ture within the monotonicity constraints will eventually be imperative. Additional
work is needed on the following questions :

1. What is the mathematical nature of the simple representations for spatial
derivative operators and integral conservation operators and how can they be
optimized computationally?

2. IS there an algorithm to optimize the grid structure using holes and/or adap-
tively varied local modifications of the monotonicity functions?

3. What is the cost of not reaching monotonicity every cycle?

20 JAY BORIS

4. What is the geometric or information theoretic meaning behind the ambiguity
of possible representations, i.e., what kind of an uncertainty principle does this
represent?

5. Is there a proof of convergence for the swapping iteration procedure?

ACKNOWLEDGMENTS

I would like to acknowledge years of informative and rewarding discussions with Dr. Martin Fritts on
topics ranging over all aspects of this subject. His diligent and creative efforts on the LTG approach
have provided an information base for the development of the MLG algorithm. I would also like to
thank Dr. Sam Lambrakos for providing the information in Fig. 2.4 and 2.6 and Table II. This work was
supported by the Office of Naval Research Projects in Large-Scale Scientific Computing (44-1909),
RR014-03-05), Computational Hydrodynamics (44-0573, RR0 1403-02), and Molecular Dynamics (44-
1950-0-5, 61153N), and by the Naval Research Laboratory.

REFERENCES

1. R. W. HACKNEY AND J. W. EASTWOOD, Computer simulation using particles, (MC. Grax-Hill, New
York, 1981), Chap. 8, p. 267.

2. W. F. GUNSTEREN, H. J. C. BERENDSEN, F. COLQNNA, D. PERAHIA, J. P. HOLLENBERG, AND D.
LELLOUCH, J. Compur. Chem. 5 (1984), No. 3, p. 272.

3. G. C. Fox AND S. W. Oreo, Phys. Today, p. 50 (May 1984).
4. L. M. ADAMS AND H. F. JORDAN, “Is SOR Color-Blind?“, ICASE Reprot No. 84-14, NASA Langley

Research Center, May 1984 (unpublished).
5. E. J. LERNER, High Technology, 20 (July 1985).
6. W. P. CROWLEY, “FLAG: A Free-Lagrange Method for Numerically Simulating Hydrodynamic

Flows in Two Dimensions,” pp. 3743, in “Proceedings of the Second International Conference on
Numerical Methods in Fluid Dynamics,” Lecture Notes in Physics 8 (M. Holt, Ed.), (Springer-
Verlag, New York, 1971).

7. M. J. FRITTS AND J. P. BORIS, “The Lagrangian Solution of Transient Problems in Hydrodynamics
Using a Triangular Mesh,” J. Comput. Phys. 31 (1979), pp. 173-215.

