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When a large number of separate objects interact, N(N- 1)/2 interactions can occur. 
However, a given object usually interacts strongly with only a few of the N - 1 others. Unfor- 
tunately, keeping lists of the other objects with which it interacts or recomputing the near 
neighbors each timestep is computationally expensive. This “near neighbors” problem has per- 
sisted in computational physics and computational geometry for several decades. We need 
efficient algorithms which select important near neighbor interactions without having to check 
and analyze Nr possible interactions. To date the best algorithms which scale as N, rather 
than N*, are scalar algorithms which address memory randomly. 

This report introduces an efficient 3D near neighbors algorithm whose cost scales as N and 
which vectorizes easily using data from contiguous memory locations. A Monotonic Logical 
Grid (MLG) for storing the object data is defined dynamically so that objects which are 
adjacent in real space automatically have close address indices in the compact MLG data 
arrays. The data values for each object are stored at a location (i, j, k) in the MLG such that 
the X positions of all the objects increase monotonically with index i, the Y positions increase 
monotonically with index j, and the Z positions increase monotonically with index k. Such a 
well-structured mapping from the real positions to regular, compact data arrays can always be 
found. Further, when object motions result in a local violation of spatial monotonicity, 
another MLG always can be found nearby. This means that local changes in the object 
positions and hence spatial ordering do not trigger global changes in the Monotonic Logical 
Grid. 

The data relocations required to maintain the MLG as objects pass each other in space can 
also be vector&d efficiently. The MLG algorithms will execute effectively in small array 
processors and partition to take advantage of asynchronous parallel architectures in 
VLSI/VHSIC-based supercomputer systems of the future. The technique seems well suited to 
real time applications with massively parallel distributed processing architectures. 0 1986 
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I. INTRODUCTION AND BACKGROUND 

When N independent objects interact in space, N(N- 1)/2 interactions might be 
important in determining how a given object reacts to the others at any instant. 
Usually exact positions and velocities of the neighboring objects must be known. 
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Knowing statistical averages and general properties of the distribution of objects 
nearby does not provide enough data to compute local interactions accurately. At 
any instant a given object usually interacts strongly with only a few of the N - 1 
others. Unfortunately, keeping and updating lists of the neighbors or repeatedly 
recomputing which ones are near neighbors is computationally expensive. The goal 
is efficient, simple algorithms which select the near neighbors without a com- 
putational cost scaling as N2. Effort on the near neighbors problem has persisted in 
computational physics and computational geometry for several decades. This report 
introduces an efficient 3D near neighbors algorithm whose practical cost scales as N 
and which vectorizes easily using data from contiguous memory locations. 

An efficient vector solution of the near neighbors problem would advance many 
important applications. For an important class of molecular dynamics problems 
involving interactions among many atoms and molecules, the near neighbors exert 
the strongest forces and are the most likely candidates to enter into chemical reac- 
tions. Many important physics problems in gases, liquids, solids, and transitions 
among these phases require detailed many-body calculations where the close 
encounters are most important. 

For graphics based on vertex-edge representations of complex 3D shapes, local 
relationships and orientations of nearby vertices determine which surfaces are 
visible. It is clearly advantageous to be able to construct a 2D image of a complex 
3D scene, for example, using the parallelism made possible by Very Large Scale 
Integration (VLSI). Terrain management simulation models and multi-dimensional 
radiation transport models are currently limited in their ability to compute 
geometric obscuration. For controlling airline traffic over crowded airports, 
collisions with nearby planes are the most immediate danger-and demand shorter 
timescales for detection and corrective response. Consider the related scenario for 
futuristic battle area management. A one-pass engagement against many thousands 
of high-speed opponents requires fast redetermination of near neighbors to ensure 
effective targeting in real time. These applications all require rapidly updating many 
distinct local configurations as the objects move. Hereafter I will refer to these par- 
ticles, objects, corners, etc., as nodes- concentrating on the geometric aspects of 
the problem. 

For complex manybody problems with N = 5000 independent nodes, more than 
30,000 degrees of freedom are required, and 12.5 million interactions exist which 
ideally ought to be considered. Current supercomputers deliver m 50 Megaflops 
(million floating point operations per second) on optimized but realistic problems. 
The straightforward recalculation of all interactions requires about 60 vectorizable 
operations per interaction, or 10-15 seconds of dedicated supercomputer time. This 
is not fast enough for applications where the data base should be updated and the 
neighbors recalculated every second or two in real time. 

The Monotonic Logical Grid technique introduced here scales as N, in practical 
situations, and uses data from contiguous memory locations. A compact data struc- 
ture to store the node data, called the Monotonic Logical Grid (MLG), is defined 
dynamically so that nodes which are adjacent in real space automatically have close 
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address indices in the MLG data arrays as well. As two nodes move past each other 
in space, their data are exchanged or “swapped” in the MLG data arrays to keep a 
strictly monotone mapping between the geometric locations and the corresponding 
storage location indices. 

To construct an MLG the data values for each node are stored at location 
(i, j, k) in the MLG such that the X positions of all the nodes increase 
monotonically with index i, the Y positions increase monotonically with index j, 
and the 2 positions increase monotonically with index k. Section II describes the 
algorithm in some detail. 

It is not obvious but it is true that such an organized logical ordering of even 
random locations can always be found. In Section II an order Nlog N constructive 
algorithm for one such MLG is provided proving existence. Generally more than 
one MLG meeting all the monotonicity conditions seems to be possible so the 
technical problem of selecting the optimum MLG for a particular application has 
to be addressed. In one case, minimizing average distances to neighbors in the 
MLG may give the best grid. In other problems it may be best to maximize the 
shortest distance to any node which is not a near neighbor in the logical grid. 

Further, when node motions result in a local violation of the monotonicity con- 
ditions on which the original MLG was based, another MLG can be found nearby. 
This means that local changes in the node positions and hence spatial ordering do 
not trigger global changes in where the node data have to be stored in the MLG. 
The data relocations to maintain the MLG as nodes pass each other in space can 
be vectorized without inefficient gather/scatter operations or variable-length 
(scalar) linked lists. The MLG data structure and algorithms allow contiguous-data 
vector operations which are long enough to be efficient for physical force sums, for 
F= Mu orbit integrations, and for the node data “swapping” used to restructure the 
MLG whenever the monotonicity conditions are violated. 

The cost to execute a simple test version of the model is one hour on a DEC- 
VAX 1 l/780 for 1000 particles for 1000 timesteps. We used a power series force law 
for the 124 nearest neighbors, assuming that the average particle separation dis- 
tance is smaller than the cutoff radius R, of the force law. Our Cray X-MP/12 treats 
the same calculation over 100 times faster. A minicomputer host with modest array 
processors would be fast enough using an MLG to integrate 5000 interacting nodes 
and restructure the data base thousands of times in about 15 minutes, useful for 
realtime applications where current supercomputers using other algorithms will be 
inadequate. The MLG also permits partitioning to take advantage of asynchronous 
multi-processor parallelism in VLSI/VHSIC-based distributed processing systems 
(e.g. C3 I). 

Brute force recalculation of all pair interactions can be vectorized but is of order 
N2 and therefore costly. The best near neighbors algorithms published Cl] are of 
order N with minimal operation counts. However, these O(N) algorithms are 
intrinsically scalar and execute relatively poorly in parallel or pipeline-architectured 
supercomputers. Further, memory is addressed essentially at random so data buf- 
fering from disk or virtual memory for a large problem is time-consuming. 
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There are too many near neighbor algorithms and variations possible to compare 
all of their operation counts. Further, optimal implementations are always machine 
and problem dependent [2]. It is even harder to compare scalar and vector 
algorithms, something we would like to do in theory here but which can really only 
be done in practice. As a rule of thumb, efficient use of the vector hardware in 
supercomputers, array processors, or the new generation of parallel processors 
generally produces over an order of magnitude speedup over reasonable well com- 
piled scalar code. In some cases the vector speedup factor will be much greater and 
in others less. 

For problems where the number of important near neighbors is large enough 
that the computational cost is dominated by the physical interaction calculations 
rather than computational bookkeeping to find the near neighbors, the algorithm 
introduced here calculates two to three times as many interactions as minimally 
necessary. This is accepted as the price for simple logic and vectorized computation 
in contiguous memory. This means that a computer whose vector speed is only a 
few times the scalar speed may see no improvement over the Hackney-Eastwood 
PPPM techniques. In computers where the vector-scalar ratio is large, an order of 
magnitude improvement with an MLG is at least conceivable. More substantial 
gains are possible in highly parallel, multi-processor systems because the MLG 
algorithms partition naturally. 

Let N,, = -60 be the total number of floating point operations (flops) used to 
evaluate each interaction between two of the N= 5000 nodes. The main component 
of the cost for a timestep will be 

# Flops to compute all interactions = Fcai 

= Nx (Nx NJ2 (1.1) 

= 7.5 x lo8 flops + 15 set/step at 50 Megaflops. 

Manybody calculations which compute all interactions become prohibitively 
expensive with even a few hundred nodes because thousands of timesteps are 
required for complex problems. The operation count per timestep goes up 
quadratically with the number of nodes N but the effective resolution only increases 
as the cube root of the number of nodes. This scaling of cost with at least the sixth 
power of resolution is prohibitive. If the number of timesteps also has to be 
increased when more nodes are simulated, the scaling can be even worse. This brute 
force O(N*) algorithm is of interest because it vectorizes and partitions easily and is 
exceedingly simple. 

Reduction of this computational expense is obtained by computing the details of 
the interactions only for pairs of nodes closer than a cutoff distance R,. This basic 
nearest neighbors concept takes its most sophisticated form in the “Particle-Par- 
ticle-Particle-Mesh” (PPPM) algorithms of Hackney and Eastwood [l]. Faster 
algorithms and data structures for implementing this nearest neighbor 
approximation have been the subject of much computational research in the last 
few decades. 
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Checking two locations to see if they are within a distance R, of each other 
requires about N,, = - 10 floating point operations. Nine or ten flops are required 
simply to calculate the square of the distance between the two nodes and then com- 
pare it with the square of R,. If done for all pairs of nodes, this simple check costs 
15-20% as much as the brute force calculation so relatively little is gained. 

The only way to avoid the N* premium is to update the near neighbors list of 
each node using nodes in a volume larger than would be required for an interaction 
cutoff of R, but much smaller than the entire system. Hackney and Eastwood define 
a PPPM “chaining mesh” where dX= dY = dZ = R, and check distances to objects 
known to be in only the nearest 13 = (33 - 1)/2 cells. Only these particles might be 
within R, of a particle in the chaining cell under consideration. On average only 
about 40% of the nodes in these 13 cells are actually within R,. Taking L as a 
typical system dimension, there are N,, = (R,/L)3 nodes in each of the PPPM cells 
on average. The number of cutoff distance checks performed in a timestep is then 

# PPPMchecks=Nx 13xN,,. (1.2) 

In the PPPM formulation, when R, is twice the average spacing, a typical node has 
its distance to 104 other nearby nodes checked (13 cells x 8 nodes per cell). The 
corresponding number in MLG would be 62 if all interactions within two grid dis- 
placements in any direction are kept. This nominal factor of two gain in the MLG 
approach is lost again because all the interactions would be calculated to maintain 
vectorization rather than only 40% as possible with the scalar PPPM algorithm. 
The real gain is the ability to use efficient, contiguous memory, vector operations 
throughout the MLG algorithms and to cleanly partition the problem into com- 
putational subtasks. 

The operation count for the overall MLG algorithm developed next in Section II 
is also problem dependent. Using typical simulation variables summarized in 
Table I below, the cost of the MLG in vector floating point operations to execute a 
timestep, exclusive of the relatively inexpensive orbit calculations, is 

# Flops for the Monotonic Logical Grid algorithm = Fmlg 

= N x (N,, x N,, for neighboring node interactions 

+ 3 x N,i x N,,) for swapping iterations in X, Y, 2 

= 2.25 x 10’ flops -+ - 0.5 set/step at 50 megaflops. 

(1.3) 

Here Nsi = -4 is the number of iterations of vector swapping performed over the 
entire grid to restructure the MLG after the node positions change each timestep. 
N,, = -60 is the number of floating point operations to execute a single swap of 
the data for two nodes in the MLG. 

Typical values of manybody simulation variables are shown in Table I for a 
5000~node 3D calculation where N, -N, -N, - 15-20. About 0.4 set/step are 
required on our Cray X-MP/12, rated at about 100 Megaflops. 
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TABLE I 

Typical Values of Manybody Simulation Variables for a 
5OWNode 3D Calculation where N, -NY - N, - 15-20 

N = 5000 = # of nodes interacting in space 
N,, = -60 = # operations per vector swap in MLG algorithms 
N,, = Q 4 = average # of vectorized swapping iterations to 

relocate object data in the MLG 
N,. = -60 = # of near neighbors usually included in the 

interaction calculations 
N,, = -60 = # of flops total compute an interaction 
N,, = - 2.5 = # of steps between recomputation of the 

nearest neighbors lists in scalar algorithms 
Nm = # of objects in the average cell of PPPM 

chaining mesh 

Section II contains a description of the MLG itself, an O(N log N) sort algorithm 
to find a starting MLG from arbitrary initial data, and simple algorithms which 
restructure the grid dynamically as the nodes move. Section II also presents a few 
simple tests of the method. Section III considers several extensions. Section IV con- 
tains a summary and conclusions. 

II. THE MONOTONIC LOGICAL GRID ALGORITHM 

A Monotonic Logical Grid is a simple, compact way of indexing and storing the 
data describing a number of nodes moving in space. For N particles in three dimen- 
sions, the three arrays of locations, X(i, j, k), Y(i, j, k), and Z(i, j, k), constitute an 
MLG if and only if 

X(i, j, k)<X(i+ 1, j, k) for 1 <i <NX- 1, 

Y(i, j, k) < Y(i, j+ 1, k) for l<j<NY-1, (2.1) 

Z(i,j,k)<Z(i,j,k+l) for 1 <k<NZ- 1. 

Given N = NX x NY x NZ random locations, the spatial lattice defined by an MLG 
is irregular. However, the cells defined by logically neighboring locations are distor- 
ted cubes and thus form a useful consistent partitioning of the spatial volume. 
When the N node locations satisfy Eqs. (2.1) and any additional constraints or 
relations specifying other than infinite-space boundary conditions, they are in 
“MLG order.” This ordering is useful because the direction for going from one node 
to another in space and in the MLG is the same. Further, nodes which lie between 
two nodes in space will also be between them in the MLG. Thus neighbors in real 
space have neighboring address indices in the MLG as well. 
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FIG. 2.1. Three 4 x 4 Monotonic Logical Grids are shown. Four rows of four nodes each represent 
near neighbors rather well for many spatial configurations. The cells in the MLG cluster automatically 
where the nodes are. 

Figure 2.1 shows three different spatial configurations of 16 nodes. The nodes are 
ordered into four rows and four columns in each of these configurations 
corresponding to regular storage of the data in the two-dimensional 4 x 4 MLG. 
The cells of the MLG move with the nodes and thus always have exactly one node 
in them at any time. When all the nodes move to the upper left of the region, as in 
the panel on the right, the MLG is just as regular as when the nodes are uniformly 
spaced. This mapping of irregular locations onto a very regular data structure is 
what permits optimal use of vector and multiprocessor hardware. 

Figure 2.2 illustrates several different MLG mappings of the same 16 node 
locations. The upper panel shows the 16 locations in a regular spatial lattice. The 
obvious numbering of the locations into four rows of four nodes each is an MLG 

FIG. 2.2. Three Monotonic Logical Grids from identical data. The regular, doubly periodic 4 x 4 grid 
in the upper panel is a trivial MLG. The MLG in the lower left is a moderate distortion of the regular 
lattice above. The center and right-hand panels are other, somewhat more distorted MLGs indexing the 
same node locations as the optimal MLG on the lower left. 
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because the X and Y components of all the node locations (dots) increase 
monotonically with the X and Y indices, i and j. In the three lower panels the 
locations have been displaced from the regular spacing. Each of these panels con- 
tains the same data, but the MLGs for storing these data, as indicated by the 
logical mesh lines, all differ. 

The lower left panel is a recognizable distortion of the regular grid above. The 
indexing of the nodes would be identical in both cases although the actual data 
stored would differ somewhat since the nodes have moved away from their regular 
locations. The lower center and lower right panels show different logical indexing 
for the same physical data giving two other acceptable Monotonic Logical Grids. 
In the center the connections to points in the second row from above and from 
below have all been displaced to the left. On the right, the connections to the 
second column from nodes located logically in columns one and three have been 
displaced downward. 

These figures show that there can be a number of MLGs with the same 
Lagrangian data, all satisfying the required monotonicity conditions from 
Eqs. (2.1). These spatial monotonicity conditions constitute 3N - NX x NY - 
NY x NZ - NZ x NX numerical comparisons which can be performed to determine 
if a particular organization of the node locations is in MLG order. For each dimen- 
sion of the desired data structure such a monotonicity condition can be defined. 

In space the coordinates can be rotated or redefined and this corresponds to a 
different family of MLGs for the same node positions. The monotonicity conditions 
may not change in the new coordinate system but the node location coordinates 
will. Even if the coordinate system is held fixed, node motion will quickly invalidate 
at least some of the relations (2.1) requiring a reorganization of the node data in 
the arrays to restore a completely monotone mapping. Using the monotonicity con- 
ditions, a given data structure can be checked to see if the locations are in MLG 
order more efficiently than distances can be compared in space. However, 
additional algorithms are needed when MLG order is violated. 

If the nodes are not in MLG order, the following algorithm using a vector sort 
routine O(Nlog N) can be used to rearrange them. First sort all N locations into 
the order of increasing Z. The first NX x NY of them should be indexed k = 1, and 
sorted into the order of increasing Y. The first NX of these should be indexed j== 1 
and then sorted into the order of increasing X. These nodes are indexed from i= 1 
to i = NX. The next NX locations, indexed j = 2 but still k = 1, are again ordered 
and indexed from i = 1 to i= NX. This procedure is continued until the first 
NXx NY plane of locations has been arranged. Since the node locations were 
initially ordered in Z, the subsequent reorderings within the k = 1 plane cannot dis- 
turb the monotonicity conditions relating the first plane to any subsequent reorder- 
ing of the second and subsequent planes. Similarly, all the locations will satisfy the 
monotonicity conditions in Y and X as well. 

Once the first plane is ordered, the next NX x NY locations are indexed k = 2, 
and the MLG ordering within this plane is constructed just as for the first plane. All 
NZ planes are organized this way. The process requires of order 
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NZ x NY x NXX (log NZ + log NY + log NX) 

+ NZ x (NY x NXx (log NY + log NJ-) + NY x NXx log NX) (2.2) 

=NZxNYxNXx(logNZ+2logNY+3logNX) 

operations to construct the MLG. This sort algorithm could be repeated every 
timestep as necessary to restructure the MLG when node motions in one of the 
three coordinate directions cause some of the conditions (2.1) to be violated. 

The existence of this constructive algorithm proves that at least one MLG for 
even random locations always exists and that it is not hard to find. As a con- 
sequence, data manipulation and summation algorithms in the MLG can always 
assume the rigorous spatial monotonicity of the MLG. When several node locations 
are identical, any ordering the sort procedure comes up with is correct as the con- 
ditions (2.1) are satisfied. Locally degenerate grids are possible when several 
locations overlap. 

Although this algorithm is fast, it is of order N log N, all data must be 
manipulated whether it is in MLG order or not, and the algorithm may move data 
a long distance in index space to correct even small changes in position. To counter 
these objections, an order N log N algorithm is described which executes local but 
vectorizable exchange or “swapping” operations on the MLG data to restore 
monotonicity everywhere. The extra factor log N now has a very small coefficient 
because small monotonicity upsets from the previous set of locations generally do 
not require information from the other side of the grid for their correction. 

If two nodes move less than a typical separation distance per timestep, a con- 
dition generally required for accurate integration of the equations of motion, a few 
iterations are usually enough to restore MLG order. A “swap” is executed by 
testing the conditions in Eqs. (2.1), and then, when the corresponding monotonicity 
condition is violated, exchanging the locations in the logical grid of all data pertain- 
ing to the two nodes involved. Each direction is checked separately. A red-black 
algorithm [4] would allow at least half the tests in a given direction to be perfor- 
med simultaneously and thus vectorized while converging as fast as a scalar 
iteration. 

Five fully parallel arithmetic operations are sufficient to test for monotonicity 
and prepare to swap any amount of data by the usual data-splitting technique of 
multiplying by a one or a zero. Appropriately chosen ones and zeros can be used to 
exchange the different data at the node locations in six additional parallel 
operations per data item. When the locations are in MLG order, the swapping for- 
mulae change nothing. When two locations are out of order, these formulae 
interchange the node data in the MLG so they will be in order for the next 
iteration. The algorithm vectorizes easily and all node data at every MLG point can 
be treated identically. 

These six operations must be repeated to swap each data variable stored in the 
MLG. As a minimum these variables include the three components of the node 
locations and an identification number, ID #(i, i, k), to mark which of the N par- 
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titles currently is at i, j, k in the MLG. To vectorize the complete algorithm, the 
velocity components VX(I’, j, k), VY(1’, j, k), VZ(i, j, k), the mass M(i, j, k), and 
another force law constant FC(i, j, k) must also be moved about dynamically. 
These nine variables require 54 operations to be moved between adjacent cells for 
each swapping iteration. Thus N,, = -60 operations are required for each iteration 
in each direction for each node. This is about as much work as calculating three 
components of the force acting between two nodes which are near neighbors in the 
MLG. With N,i = -4 swapping iterations being performed in each direction, the 
total cost of restoring the MLG every timestep is about the same as calculating for- 
ces from 12 neighbors. When timesteps are short, this cost reduces further. 

When the MLG algorithm is used, the cost in vector floating point operations to 
execute the geometric and force summing in a timestep is given by Eq. (1.3). The 

FIG. 2.3 One plane of the MLG for the 512-particle test problem is shown at four successive times as 
random motions distort the initially regular skew-periodic lattice. The panel in the lower right is plotted 
after several transits of the system by the fast particles. The average grid line length does not increase 
above about fi times the initial, regular, and nearly minimal spacing. 
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speedup expected using this algorithm is large, a factor greater than thirty for 5000 
nodes. Not only is the N* dependence removed but the actual near neighbor 
interactions can be computed with very high efftciency, comparable to the best 
order-N scalar algorithms. At most a fifth of the computation is expended on main- 
taining the MLG data structure. The rest is used in computing pairs of interactions 
at full vector efficiency. 

The random motion of points in a cubical domain is taken as a test problem to 
illustrate the concepts. A topologically regular 8 x 8 x 8 3D grid is defined for stor- 
ing the position and velocity components of 512 randomly located nodes. The 
domain is doubly periodic in X and Y and is bounded in Z by two reflecting end 
walls at Z = 0 cm and Z = Z,,, = 8 dZ. A number of short calculations have been 
performed using this system to test and develop various aspects of the model. 
Figure 2.3 shows the first of eight planes of this 3D MLG, plotting the X and Y 
locations of the 64 nodes currently on that plane. The initial conditions for the 
calculation are shown in the upper left, regularly spaced locations with random 
velocities uniformly distributed in each coordinate from -lo7 to +107 cm/set. The 
three remaining panels show plots of the 64 locations in the same MLG data plane 
at three subsequent times. As the nodes move in the plane and between planes, a 
complicated but clearly structured MLG is always maintained. 

Under a number of different physical circumstances and numerous different 
initial conditions the model has been able to find an MLG after only a few swap- 
ping iterations. The average near neighbor separations increase somewhat at first 
over their almost minimal initial values. Rather quickly, however, random swap- 
ping halts the increase of this average distance to the nearest neighbors. The 
average length of lines connecting the Lagrangian nodes is only about fi larger 
than the minimal lengths of the initial regular lattice. 

FIG. 2.4. Frequency of requiring N swapping iterations to construct a monotonic logical Grid. dl,, 
is the maximum fraction of the average spacing A traversed by any particle per timestep. The velocity 
distribution was square in the tests. As the timestep increases by a factor of 16 the number of iterations 
of swapping needed to restore the MLG increases only by a factor of 2, from about 2.5 iterations to 
about 5. 
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Figure 2.4 displays the frequency distribution for the number of swapping 
iterations required to restore the MLG after relative motion of the nodes has dis- 
rupted it. Three cases were run for the same initial distribution of zero-sized non- 
colliding particles, with timesteps iit = 2.5 x 10 ~ l6 set, 1.0 x 10 - l5 set, and 
4.0 x 10 ~ l5 sec. The clear, outlined bars in the middle of each bin in Fig. 2.4 corres- 
pond to the intermediate case with lo-l5 set as the timestep. For this case dl,,, = 
0.1 A meaning that the fastest particles traverse l/10 of the regular initial spacing of 
A = 10e7 cm per timestep. The data with lightly shaded bars (on the left of each 
bin 1, dl max = 0.025 A, show the results when lit is smaller by a factor of four. The 
data depicted with dark bars on the right show results when tit is a factor of four 
larger, i.e., dl max = 0.4 A. 

To interpret the figure consider dl,,, = 0.1 A. About 40% of the timesteps 
required four iterations of swapping to restore the MLG. Less than 10% of the 
timesteps required six or more iterations. The average number of iterations required 
is 4.0 for dl,,, = 0.1 A. When dl max = 0.025 A, the average number of swapping 
iterations is 2.85, about 2fi. When dl,,, = 0.4 A, the average is 5.0 swapping 
iterations per timestep. Thus the actual computational work decreases per unit 
integration time with longer timesteps because the number of swapping iterations 
increases much more slowly than the timestep increases. 

A great deal of swapping goes on in the first few iterations out to the average 
number for the particular timestep chosen. For timesteps with relatively large num- 
bers of iterations, the likelihood of this extra work being required decreases by a 
factor of two or three for each extra iteration. These timesteps requiring a relatively 
large amount of work contribute very little to the average computation load needed 
to restore the MLG because they occur so infrequently. 

T 8 

5 10 15 20 
log2 N w 

FIG. 2.5. The N log N cost of the swapping algorithm is illustrated. The average number of swapping 
iterations required to restore MLG order in each of three different system and timestep sixes is shown. 
The scaling with N log N is clearly established by the straight lines through the data points for different 
system size and timestep. In timings on the NRL Cray, swapping requires only about 5% of the total 
run time-allowing systems in excess of 1000 x 1000 x 1000 before swapping becomes a significant frac- 
tion of the overall execution time. 
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Figure 2.5 shows the average number of swapping iterations required as a 
function of the base two logarithm of the system size N for the three timesteps con- 
sidered above. The N log N dependence is clearly evident. For the 32 x 32 x 32 node 
system running a molecular dynamics problem on the Cray X - MP/12 at NRL, 
the swapping constitutes only about 5% of the cost of the entire calculation so 
additional optimization is not required. 

In test molecular dynamics calculations, with non-zero particle size, forces were 
considered between a given particle and each of the 5 x 5 x 5 = 125 neighboring par- 
ticles centered on it in the MLG. Since the interaction has to be computed only 
once for each pair of nodes in the Near Neighbors Template and can be ignored for 
self-interactions, these tests had 

N,,=(5x5x5-1)/2=62= -60 (2.3) 

near neighbors. When many nodes are within the cutoff distance R,, the Near 
Neighbors Template should be extended to three planes in each direction, i.e., to 
7 x 7 x 7. An appreciable fraction of the forces calculated will be beyond the cutoff 
distance but this extra work can be performed by vector operations working from 
contiguous locations in the computer storage. This gain in speed is typically several 
orders of magnitude on highly parallel systems and is still worthwhile even if a fac- 
tor of two or three is wasted calculating unnecessary interactions. 

When nodes are far apart compared to the cutoff radius R,, only the 13 neighbor 
interactions from the 3 x 3 x 3 interaction template need be considered. This num- 
ber 13 is the same as the number of chaining cells which have to be considered in 
Hackney’s PPPM data structure to find all nodes within the cutoff radius R,. 
Figure 2.6 shows a schematic rendition of three nested Near Neighbors Templates. 
Only the half of the template with index offset larger than zero has to be considered 

l 16 pts 
* 30 pts 
l 16 pts 

FIG. 2.6. Near Neighbors Templates for 5 x 5 x 5 neighborhood. Three shells of neighbors, each on 
average farther from the target cell, are shown as the square, triangle, and circle points, respectively. 
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since all pair interactions with nodes having a lower storage address index will have 
been calculated previously. As shown, shells of interaction can be defined which 
correspond approximately to neighbors at different physical distances. The 16 
neighboring nodes indicated with squares form the closest shell. The 30 triangle 
nodes are a bit further away, on average, and the 16 circle nodes form the furthest 
shell of the NNT. 

III. ADDITIONAL ASPECTS OF MONOTONIC LQCICAL GRIDS 

The MLG replaces a regular grid in space having a variable number of nodes in 
each cell for an irregular spatial grid which has exactly one node per cell by con- 
struction. This logical and computational simplification brought about by the MLG 
mapping permits extensive optimization under current and planned supercomputer 
architectures (e.g., [3, 5-J) without sacrificing the generality needed to make it 
useful. Thus the MLG algorithms can be applied to gas, solid, and liquid systems 
using the same logical structure for problems of interesting size, i.e., 
100&10,000 particles. 

Optimization of nearest neighbor algorithms for particle dynamics is both 
machine and problem dependent. Vectorization techniques to achieve very high 
rates of computation require that all logical and arithmetic operations be performed 
on organized arrays of independent data. Distributed processing approaches to 
massive parallelism rely on a number of self-controlled processing centers operating 
asynchronously, but according to fixed rules of cooperation, on an evolving data 
base. To take advantage of both approaches simultaneously requires being able to 
define a number of vectorizable segments of the problem which can be calculated 
independently. Furthermore, the vectors must be long enough to be com- 
putationally efficient but short enough that the memory needed in each 
asynchronous processing center is not prohibitively expensive. The MLG 
algorithms can be partitioned for multi-tasking across a number of independent 
vector processors. 

To maximize the length of vectors within each partition when the typical MLG 
dimension, NX~NYYNZ~N’~~, is only about 20 (8000 objects) requires treating 
a substantial fraction of a plane as a single vector. In the 8 x 8 x 8 test problem, vec- 
tors of length 64 can be used throughout except for the X-direction monotonicity 
tests where vectors half as long would result. This is accomplished by collapsing 
several indices into one index and by paying careful attention to the boundary con- 
ditions. 

Several different boundary conditions have been tested and used with Monotonic 
Logical Grids; reflecting conditions, 3D free space conditions, doubly periodic con- 
ditions, and doubly skew-periodic boundary conditions. The boundary conditions 
determine the configuration of created data placed in “guard” or “ghost” cells 
around the MLG data arrays. There are as many planes of guard cells beyond the 
core MLG as are necessary to allow the pair-interaction calculations to proceed for 
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nodes on the edge of the MLG without reaching for unavailable information. This 
common technique to simplify the program leaves hiccups in the memory storage to 
skip over the ghost cells. 

These hiccups in usual implementations of doubly periodic boundary conditions 
can be avoided by connecting the end of one row (I- KY, J) with the beginning of 
the next row (I = 1, J+ 1) logically as neighbors. They are physically close, only 
displaced vertically by dY in a regular lattice. This “skew-periodic” MLG structure 
is shown in the upper right panel of Fig. 2.3. There the ninth row and column of 
image points are depicted above and to the right respectively of the fiducial space 
outlined in fine lines. This indexing scheme allows NXx NY nodes to be treated as 
interior points without indexing hiccups. In this effectively one-dimensional index- 
ing scheme, guard cells are only used at the ends of the 2D planes in memory. The 
dY of skewing is distributed over the whole grid and hence becomes negligible once 
NXx NY reaches 64 or so. 

Each of these different conditions requires different, straightforward treatments 
for the image nodes when swapping occurs. The only slightly tricky part is optimiz- 
ing the swapping in the skew-periodic grid. [Note that one has to subtract (or add) 
one system length in the X-direction (i.e., iVXx d) for each row down (or up) in the 
MLG the node data are swapped.] The overall skew-periodic MLG algorithm is as 
simple as the regular periodic boundary condition and replicates hypercube 
addressing in a regular linear memory. 

Further gains are possible in principle. Optimum computational efficiency results 
when the last few swapping operations are performed only for the few grid points 
which might have become non-monotone due to adjacent swaps taking place dur- 
ing the previous iteration. The scalar program to perform the few remaining swaps 
and keep track of which few nodes might have had their monotonicity conditions 
affected by the previous swaps is complicated. To date, convergence relative to the 
force calculations has been so fast that this extra work has not been indicated. In 
the future it may be worth the effort for production calculations. 

The same kind of gain can be obtained by trimming the Near Neighbors Tem- 
plate defining which logical neighbors are likely enough to be close spatial 
neighbors that they should be included in the vector interaction calculations 
automatically. When a scalar “cleanup” portion is added to the vector force sum- 
ming algorithm, the number of logically neighboring nodes which are always con- 
sidered can be reduced significantly below that required to ensure no near misses. 
Figure 2.6 shows three shells of logical interactions in the Nearest Neighbors Tem- 
plate (NNT), each succeeding shell taking neighbors which are logically, and 
usually physically, farther away. 

For the few nodes which may have spatially close neighbors which are removed 
more than two or three locations logically, a scalar calculation can be performed. 
Once a node requires extra work, the scalar search can be extended to whatever 
logical distance is necessary to ensure that physically nearby nodes do not go 
uncounted. 

A 5 x 5 x 5 cubical NNT has 62 interactions which will be considered for each 

581/66/l-2 
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TABLE II 

The Percentage of MLG Near Misses“ 

0 In each cell the percentage probability of a node in that MLG cell being within 4, 5, and 6 A is 
given by the first, second, and third numbers, respectively. For example, the nodes that are displaced by 
one in both i andj from the target cell (i.e., i + 1, j+ 1 or up one and one to the right) come within 5 A 
of the target cell (0.5 times the average separation) only 1.3080% of the time. 

node. From empirical evidence to date this is adequate provided the critical radius 
of consideration is somewhat less that the average separation, here taken to be the 
original node spacing. Relatively few near misses (1 in 104) can occur because 
neglected nodes are logically at least 3 and generally 4, 5, or 6 nodes away. When 
the shell is extended by about 20% (see Table II) to include nodes three steps away, 
fewer than 1 in lo6 or 10’ near misses occur. 

Holes can be added to the MLG, locations which move or stay fixed in space but 
which don’t contain a node. Any node neighboring a hole has one fewer real node 
in its interaction NNT. This obvious disadvantage is balanced by the fact that hole 
locations can be updated any way necessary to improve the locality and structure of 
the MLG. By adding or shifting holes about judiciously it may be possible to avoid 
highly distorted MLGs. The holes would be subject to swapping with nodes just as 
if they were nodes but their equations of motion can be different and their interac- 
tions with real nodes are zero. 

Table II was computed using the 512-particle model with point non-interacting 
particles and the complete 7 x 7 x 7 NNT. The volume around each particle was 
divided into shells of thickness 1 A and the number of particles in each radial shell 
was counted for particles logically outside the 5 x 5 x 5 template to determine how 
often “near misses” occur. A near miss occurs when a node gets close physically to 
another node without coming within the MLG Near Neighbors Template which 
ensures that the interaction is automatically counted in the vector sum. Concen- 
trating first on the common features of the two physically identical calculations 
shown in the figure, we see that the probability of an uncounted particle 
penetrating the interaction volume drops off very rapidly as the distance becomes 
small and hence the physical interaction would be important. It is 100 times less 



A VECTORIZED “NEAR NEIGHBORS” ALGORITHM 17 

likely to find an undetected particle coming within 10 8, than to find one coming 
within 20 A. It is another 100 times less likey to find one coming within 5 A. No 
near misses were ever found less than about 3 A. The table also shows quite clearly 
that nodes three locations away can be important. 

A few words about the application of the MLG to Lagrangian fluid dynamics are 
appropriate here. Each node of the grid can be identified with a fluid or vortex 
element. The advantage is having a regular grid available to solve the physical 
evolution equations. Elliptic equations, for example, become amenable to highly 
efficient, vectorized multigrid methods on regular NX x NY x NZ grids even though 
the fluid elements themselves move randomly. Two-dimensional and four-dimen- 
sional problems can be handled as easily by the same methods. 

Work is needed, however, on telling how to evaluate spatial derivatives 
accurately on the distorted MLG. When nodes are far apart, the fluid cannot be as 
accurately represented in between as when they are close. To keep the resolution 
more uniform than the specific fluid flow may be capable of, it can become 
necessary to remove nodes where they are crowded and to inject them elsewhere to 
better resolve some regions. To do this in the MLG involves finding a fluid element 
which can be merged with a larger one nearby in a manner which conserves mass, 
momentum, and energy. This frees up an MLG node which can be “shifted” to the 
correct row, column, and plane to improve a deteriorating local resolution. 

For comparison consider another free Lagrangian approach, the Lagrangian 
Triangular (Tetrahedronal) Grid [6-71. In this approach the logical grid structure 
varies in time as the nodes move. The number of nearest neighbors can vary from 
node to node and the number and identity of these neighbors can vary at a given 
node as the Lagrangian configurations change. This extra freedom, not allowed in 
the MLG, is used to maintain a local grid structure optimized to guarantee 
diagonal dominance of the simplest conservative finite-difference elliptic operator. 
Scalar-linked lists become necessary to keep track of near neighbors though the 
resulting algorithms are still of order N. The price is the loss of local order in the 
grid and hence vectorization. Generalizing this Lagrangian Triangular Grid (LTG) 
to 3D is straightforward but practically very complicated. The grid must be com- 
posed of adaptively restructuring arrangements of tetrahedra. 

Clearly the local spatial structure of the MLG is not as “good” as in the generally 
structured LTG but the global structure compensates for this. The monotonicity 
conditions specify a meaningful and useful relationship between spatial derivatives 
and grid differences. As a result, fluid flows with long-range correlations, unlike the 
random particle motions used in earlier tests, may lead to an additional com- 
putational expense at specific times. In the smooth flow of large rotating and trans- 
lating vortices, an initially rectilinear grid might survive many timesteps before any 
of the local monotonicity constraints are violated. Nearby points would move in 
almost the same way. Once the fluid rotates far enough, however, monotonicity 
violations would have to occur. Because of the long-range correlation of the 
motions, a number of swapping iterations may be necessary to reset the MLG. 

The MLG also suggests itself for use in multi-phase fluid problems. Each MLG 
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node could be used to represent a droplet in a spray or a grain of sand in a 
sandstorm. Droplets could have varying sizes which increase or decrease in time 
due to local surface effects like condensation, evaporation, or abrasion and all the 
droplets would not have to be simulated. The accumulation of temporal averages 
over times and distances short compared to changes in the background flow means 
that only a small fraction of all the droplets or particles would have to be followed 
in the MLG to get a good estimate of the interactions of the whole distribution of 
particles with the background gas. 

The gaseous background could be represented on a Eulerian mesh to facilitate 
swapping of mass, momentum, and energy back and forth between particles and 
gas. The volume overlap of MLG cells with cells of the Eulerian grid can be used to 
circumvent a major complication of Monte Carlo methods, choosing the values of 
continuum functions at places where there are no particles or Lagrangian nodes. 
The MLG cells provide a natural way to interpolate back and forth between the 
two representations. 

When insolation of dust or droplet clouds is important, the MLG provides a sim- 
ple way to assess the radiation opacity along any particular direction. The grid axes 
can be rotated in a given direction and the swapping algorithm used to resort the 
nodes along that direction. There are a number of line-of-sight obscuration 
problems where this flexibility will be useful. 

The Monotonic Logical Grid has been given only a geometric context so far. In 
the applications and examples above, the moving objects are being arranged 
relative to each other in 3D Cartesian space. Other more abstract applications 
suggest themselves. The MLG can just as easily represent multi-dimensional phase 
spaces for Boltzmann and Vlasov equations. The grid may also be useful for some 
classes of problems involving more abstract data organization. 

IV. SUMMARY AND CONCLUSIONS 

This report introduces a vector algorithm to determine near neighbors whose 
cost scales essentially as the number N of independent nodes. This is accomplished 
by defining a Monotonic Logical Grid for storing the node data dynamically so 
that nodes which are adjacent in real space are automatically close neighbors in the 
logical grid as well. As a simple geometric test problem, a regular 8 x 8 x 8 3D grid 
was used to store the position and velocity components of 512 randomly located 
particles in a cubical domain. For this idealized system the nodes were given ran- 
dom velocities and the MLG was evolved for many transits of the system by the 
faster particles. Statistics on near misses by logically far away nodes and on the 
number of swapping iterations required to restore the MLG were presented. 

It was found that the restructuring of the dynamically changing MLG can 
generally be computed locally in a very few vectorized iterations without using 
inefficient scalar memory references or discontiguous memory operations. Almost 
all of the grid restructuring occasioned by nodes passing each other occurs in the 
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first two or three vectorized iterations. Further optimization is possible but the 
N log N scaling of MLG restoration has such a small coefficient that it is not 
necessary. It is also found that the spatially close nodes are nearby in the MLG as 
well. Two or three MLG index displacements effectively define the spatial near 
neighborhood except for a vanishing small number of cases which can be detected 
and corrected inexpensively. 

The MLG differs from previous near neighbor algorithms. It effectively removes 
the constraint of having to associate a cell of the logical grid with a fixed region of 
real space. It introduces the simplifying “constraint” of only one node per com- 
putational cell. When many of the nodes cluster somewhere, a corresponding frac- 
tion of the storage locations in the MLG is automatically associated with that 
region. This means that substantial variations in node density are adaptively grid- 
ded by the MLG and large regions of space, as well as computer memory, are not 
occupied by empty cells. 

This algorithm gives regular global orderings of the node data and so allows 
efficient, contiguous, concurrent vector operations which are longer than the 
relatively small number of neighbors considered for each node but which can be 
much shorter than the total number N. The algorithm will execute efficiently in vec- 
tors of small array processors and permits direct partitioning to take advantage of 
massive asynchronous parallelism in VLSI/VHSIC-based distributed processing 
systems. The cost to execute the current version of the model is one hour on a 
DEC VAX 1 l/780 for 1000 particles for 1000 timesteps when a simple force law for 
the 124 nearest neighbors is used. With commercially available highly parallel 
systems, tens of thousands of interacting objects could be monitored and the data 
base restructured thousands of times in about 15 minutes, fast enough for impor- 
tant realtime applications. 

A number of potential applications were discussed briefly. Other uses will suggest 
themselves as the good properties and restrictions of the MLG mapping between 
real space and relative (logical or computer storage) space become better 
understood. Practical experience with the MLG is still limited so major surprises 
may yet be uncovered in some applications. 

Many MLG conligurations may be possible for the same physical node 
arrangements and simple examples suggest that the best configurations are much 
better than the worst. Thus efficient methods of optimizing local and global struc- 
ture within the monotonicity constraints will eventually be imperative. Additional 
work is needed on the following questions : 

1. What is the mathematical nature of the simple representations for spatial 
derivative operators and integral conservation operators and how can they be 
optimized computationally? 

2. IS there an algorithm to optimize the grid structure using holes and/or adap- 
tively varied local modifications of the monotonicity functions? 

3. What is the cost of not reaching monotonicity every cycle? 
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4. What is the geometric or information theoretic meaning behind the ambiguity 
of possible representations, i.e., what kind of an uncertainty principle does this 
represent? 

5. Is there a proof of convergence for the swapping iteration procedure? 
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